csPMI

resources-tuition-courses

AQA Computer Science A-Level

4.1.1 Programming
Intermediate Notes

O www.pmteducation Q@@ C) PMTEducation

(——|
@@
-resources-tuition-courses

Specification:

4.1.1.1 Data types:
Understand the concept of a data type.
Understand and use the following appropriately:
e integer
real/float
Boolean
character
string
date/time
pointer/reference
records (or equivalent)
e arrays (or equivalent)
Define and use user-defined data types based on language-defined
(built-in) data types.

4.1.1.2 Programming concepts:
Use, understand and know how the following statement types can be
combined in programs:
e variable declaration
constant declaration
assignment
iteration
selection
e subroutine (procedure / function)

Use definite and indefinite iteration, including indefinite iteration with the
condition(s) at the start or the end of the iterative structure. A theoretical
understanding of condition(s) at either end of an iterative structure is required,
regardless of whether they are supported by the language being used.

Use nested selection and nested iteration structures.

Use meaningful identifier names and know why it is important to use
them

O www.pmteducation Q@@ C) PMTEducation

=
PMT
-resources-tuition-courses
4.1.1.3 Arithmetic operations
Be familiar with and be able to use:
e addition
subtraction
multiplication
real/float division
integer division, including remainders
exponentiation
rounding
truncation

4.1.1.4 Relational operations in a programming language
Be familiar with and be able to use:
e equalto
not equal to
less than
greater than
less than or equal to
greater than or equal to

4.1.1.5 Boolean operations in a programming language
Be familiar with and be able to use:
e NOT
e AND
e OR
e XOR
4.1.1.6 Constants and variables in a programming language

Be able to explain the differences between a variable and a constant.
Be able to explain the advantages of using named constants.

O www.pmteducation Q@@ C) PMTEducation

=

PM]
-resources-tuition-courses

4.1.1.7 String-handling operations in a programming language
Be familiar with and be able to use:

e length

position

substring

concatenation

character — character code

character code — character

string conversion operations

4.1.1.8 Random number generation in a programming language
Be familiar with, and be able to use, random number generation.

4.1.1.9 Exception handling

Be familiar with the concept of exception handling.

Know how to use exception handling in a programming language with
which students are familiar.

4.1.1.10 Subroutines (procedures/functions)

Be familiar with subroutines and their uses.

Know that a subroutine is a named ‘out of line’ block of code that may
be executed (called) by simply writing its name in a program statement.

Be able to explain the advantages of using subroutines in programs.

4.1.1.11 Parameters of subroutines

Be able to describe the use of parameters to pass data within
programs.

Be able to use subroutines with interfaces.

4.1.1.12 Returning a value/values from a subroutine
Be able to use subroutines that return values to the calling routine.

O www.pmteducation Q@@ C) PMTEducation

=
PMT
-resources-tuition-courses
4.1.1.13 Local variables in subroutines
Know that subroutines may declare their own variables, called local
variables, and that local variables:
e exist only while the subroutine is executing
e are accessible only within the subroutine
Be able to use local variables and explain why it is good practice to do

SO.

4.1.1.14 Global variables in a programming language
Be able to contrast local variables with global variables.

4.1.1.15 Role of stack frames in subroutine calls
Be able to explain how a stack frame is used with subroutine calls to
store:
e return addresses
e parameters
e local variables

4.1.1.16 Recursive techniques
Be familiar with the use of recursive techniques in programming
languages (general and base cases and the mechanism for implementation).
Be able to solve simple problems using recursion.

O www.pmteducation Q@@ C) PMTEducation

The way in which data is stored depends on what the data is. A data type is defined by the

(——|
@@
-resources-tuition-courses

Data Types

values it can take or the operations which can be performed on it.

Data type Description
Integer A whole number, positive or negative, including zero.
Real / Float A positive or negative number which can have a
fractional part.
Boolean A value which is either true or false.
Character A single number, letter or symbol.
String A collection of characters.
Data / Time A way of storing a point in time, many different formats

are used.

Pointer / Reference

A way of storing memory addresses.

Records A collection of fields. You can think of a record as a row
from a table.
Arrays An indexed set of elements each of which has the same

data type.

Note

Knowledge of the pointer /
reference data type is not

required for AS level.

© www.pmt.education

O OO PMTEducation

csPMI

resources-tuition-courses

User-defined data types

User-defined data types are based on existing data
types and used to create a customised data structure.

For example, a shop might use a user-defined data
type called Customer to store information about their
customers. The user-defined data type might have
attributes like Forename, Surname and
EmailAddress.

Synoptic Link

In many ways, user-defined
data types are similar to
classes in object-oriented
programming.

Classes are covered in
Programming Paradigms

The way in which you use user-defined data types differs between programming
languages. It's important that you know how to use them in your chosen language.

Programming Concepts

Programming languages support a variety of different statement types, some of which are

explained in the table below.

Statement type Description

Variable declaration Creating a variable for the first time, giving it a name
and sometimes a data type.

Constant declaration | The same as variable declaration, but when creating a
constant. The value of a constant does not change
while the program is running.

Assignment Giving a constant or variable a value.

indefinite (see below).

Iteration Repeating an instruction, this could be definite or

those values.

Selection Comparing values and choosing an action based on

Subroutine A named block of code containing a set of instructions
designed to perform a frequently used operation.

O wwwpmteducation QEQ

PMTEducation

(——|
(@)
‘ -resources-tuition-courses

Definite and indefinite iteration
Iteration is the process of repeating a block of code. Examples of iteration include for
loops and while loops.

Definite iteration is a type of iteration in which the number of repetitions required is known
before the loop starts. Indefinite iteration is used when the number of repetitions required
is not known before the loop starts.

FOR Count < © TO 63 WHILE Temperature = 18
OUTPUT Count Temperature = GetTemp()
ENDFOR ENDWHILE

This is an example of definite iteration. The ~ The while loop above uses indefinite

for loop will run 64 times before finishing. iteration. The number of re_petitions is not
known before the loop begins.

Nested Structures

Selection structures and iteration structures can be nested. Synoptic Link
This means that one structure is placed within another and Indentation is a feature of
can easily be identified by different levels of indentation in High level languages.

code.

Different types of programming
languages are covered in the
chapter Fundamentals of
computer systems.

For example, the pseudocode below consists of an if
structure, within which are further selection and iteration
structures.

Whenever a new IF Colour = “RED” THEN

selection or iteration WHILE Colour = “RED”

structure begins, the Colour < UpdateColour()
code moves to a ENDWHILE

higher level of ELSE

indentation. IF Colour = “GREEN” THEN

WHILE Colour = “GREEN"
Colour < UpdateColour()
ENDWHILE
ELSE
Colour < “RED”
ENDIF
ENDIF

O www.pmteducation Q@@ C) PMTEducation

csPMI

resources-tuition-courses

Meaningful Identifier Names

When declaring a variable, it's important to give it a sensible and meaningful identifier
name. This makes it easier for others to understand what the purpose of the named object
is within the program.

If a different programmer, who was unfamiliar with your program, were to read the code,
they should be able to work out the purpose of a constant, variable or subroutine from its

name.

Arithmetic Operations

The following operations can be applied to values by your programming language.
Different languages notate these operations differently, so ensure that you’re familiar with
your chosen language’s approach.

Operation Description Example
Addition Adding together two numbers. 128 + 42 =170
Subtraction Taking one number away from another. 34 -13 =21
Multiplication Timesing two numbers together. 64 *2=128
Real / Float Dividing one number by another. 12/8=15
Division
Integer Division | The same as real / float division, but just the 12\8 =1

whole number part is given. Or12DIV8 =1
Modulo Returns the remainder of an integer 12MOD 8 =4
division.
Exponentiation | Raising one value to the power of another. 2"6=64
Rounding Limiting the degree of accuracy of a 3.14159 = 3.14
number. to 3 significant figures
Truncation Removing the decimal part of a number. 3.14159 truncated = 3

o000

© www.pmt.education

PMTEducation

(——|
(@)
‘ -resources-tuition-courses

Relational Operations

You can make use of relational operators whenever you need to compare two values.
They are used in if statements and while loops to name a few examples.

Operation Example
Equal to 5=5
Not equal to 16 <> 54
16 1= 54
Less than 75<76
Greater than 19> 18
Less than or equal to 6>=7
8>=38
Greater than or equal to 5>=4
6>=6

Boolean Operations

As explained earlier, a Boolean data type is one with a value that can only ever be true or
false. There are a series of operations that can be performed on Boolean values.

Operation Description Example Syncptic Link
NOT The opposite of a NOT 1 = 0
Boolean value Boolean operations form
an important part of logic
AND Two Boolean values 1T AND 1 =1 gates.
multiplied together 9 AND 1 =0 Logic gates are covered in
fundamentals of computer
OR Two Boolean values 1 0R B =1 systems.
added together TOR1T =1

XOR True if exactly one of two T XOR 1
values is true T XOR ©

O www.pmteducation Q@@ C) PMTEducation

r SEPMT

Constants and Variables

When a program needs to store data, it usually does so using one of two types of data
item: constants or variables.

As their name suggests, variables can change their value during the execution of a
program, whereas a constant’s value cannot change once assigned.

Constants can be used for storing data that doesn’t need to
change such as a value for pi or the number of days in a
year. Using constants allows values to be given identifier
names which makes code easier for a human to understand.

Synoptic Link

Named constants should be
given meaningful identifier
names to ensure that their

Using a constant makes changing a value much easier as it purpose can be understood.
only needs to be updated in one place in the code.

Using hard-coded values Using constants
HoursWorked < USERINPUT HourlyRate < 14
PAY < 14 * HoursWorked HoursWorked < USERINPUT
OUTPUT PAY PAY < HourlyRate * HoursWorked
OUTPUT PAY

The pseudocode examples above show two different approaches to the same problem.
One approach uses hard-coded values whereas the other uses constants.

The code which makes use of constants is easier to understand as it clearly specifies that
14 refers to an hourly rate. In the example which uses hard-coded values, it’s difficult to
understand why HoursWorked is being multiplied by 14.

O www.pmteducation Q@@ C) PMTEducation

(——|
(@)
‘ -resources-tuition-courses

String-handling operations

Strings can have various functions applied to them.

Function Description
Length Returns the number of characters in a specified string.
Position Returns the position of a specified character within a string.
Substring Given a starting position and a length, returns a portion of a

string.

Concatenation

Joining two or more strings together to form a new, longer
string.

Character to character
code

Returning the character code which corresponds to a
specified character.

Character code to
character

Returning the character represented by a given character
code.

String to integer

Converting a string to an integer.

String to float

Converting a string to a float.

Integer to string

Converting an integer to a string.

Float to string

Converting a float to a string.

Date / time to string

Converting a date / time data type to a string.

String to date / time

Converting a string to a date / time data type.

Synoptic Link

Characters are linked to
character codes by
information coding
systems.

Infermation coding systems are
covered in fundamentals of
data representation.

Note

AMP is a substring of
EXAMPLE with a starting
position of 2 and a length
of 3.

© www.pmt.education

O OO PMTEducation

csPMI

resources-tuition-courses

Random number generation

Most programming languages have the ability to generate random numbers.

A built-in function takes a seed value and uses a series of mathematical operations to
arrive at a number.

It's important that you make yourself familiar with random number generation in your
chosen programming language.

Exception handling

When an error occurs in program code, an “exception” is said to be thrown.

Once an exception has been thrown, the computer has to handle the exception to avoid
crashing. It does this by pausing execution of the program and saving the current state of
the program before running a section of code called a catch block.

This code will prevent the program from crashing and might inform the user that an error
has occurred. Once the exception has been handled, the program restores its previous
state before resuming execution.

Subroutines

Asubrqutlne is .a named block of code containing a set of. Synoptic Link
instructions designed to perform a frequently used operation.
Using subroutines reduces repetition of code and hence

makes code more compact and easier to read. subroutine.

Functions are a type of

. , Functions are covered in more
Both functions and procedures are types of subroutine and detsilater in thE tocanent

can be called by writing their name in a program statement.
While both functions and procedures can return a value,
functions are required to whereas procedures may not.

O www.pmteducation Q@@ C) PMTEducation

(——|
Cﬁ't)
-resources-tuition-courses

Parameters of subroutines

Parameters are used to pass data between subroutines within programs. Specified within
brackets after a subroutine call, parameters hold pieces of information that the subroutine
requires to run.

Length < USERINPUT
Width < USERINPUT
OUTPUT CalculateArea(Length, Width)

SUBROUTINE CalcualteArea(x, V)
RETURN x * y
ENDSUBROUTINE

The subroutine CalculareArea in the pseudocode above takes two parameters,
Length and Width. It then returns the product of the two values.

Returning values from a subroutine

A subroutine can return a value. One that always returns a value is called a function, but
don’t think that procedures can’t return a value, they can (but don’t always).

Subroutines that return values can appear in expressions and be assigned to a variable or
parameter.

Length < USERINPUT

Width < USERINPUT

Area < CalculateArea(Length, Width)
OUTPUT Area

SUBROUTINE CalcualteArea(x, Yy)
RETURN x * vy
ENDSUBROUTINE

For example, in the pseudocode above, the variable Area is assigned to the subroutine
CalculateArea. The value taken by the variable will be the value returned by the
subroutine.

O www.pmteducation Q@@ C) PMTEducation

(——|
(@)
‘ -resources-tuition-courses

Local variables in subroutines

A local variable is a variable that can only be accessed from the subroutine within which it
is declared. They only exist in the computer's memory when their parent subroutine is
executing. This makes local variables a more memory efficient way of storing data than
using global variables, which are discussed below.

Global variables

In contrast to local variables, global variables can be accessed from any part of a program
and exist in memory for the entire duration of the program’s execution.

The role of stack frames in subroutine calls

Stack frames are used by computers to store return addresses, parameters and local
variables for each subroutine call that occurs during the execution of a program.

If one subroutine calls another, nesting is said to occur. Each subroutine call will be
pushed onto the computer’s call stack in the form of a stack frame before the subroutine’s
code begins to execute. When the nested subroutine finishes executing, the stack frame is
popped from the call stack and the computer uses the information to return to execution of
the previous subroutine.

1 Name < USER:FNPUT Synoptic Link
2 OUTPUT Greeting(Name)

3 Push and pop are terms
4 SUBROUTINE Greeting(Name) i will Shcke .
5 TimeOfDay < GetTimeOfDay()

6 RETURN “Good “ + TimeOfDay + Name Stacks are covered in more
7 ENDSUBROUTINE defail in fundamentals of data
8 structures.

9 SUBROUTINE GetTimeOfDay/()

10 IF Time < 12:00 THEN

11 RETURN “morning”

12 ELSE

13 RETURN “afternoon”

14 ENDIF

15 ENDSUBROUTINE

O www.pmteducation Q@@ C) PMTEducation

(——|
@@
-resources-tuition-courses

Stack Frame Example

When the pseudocode above is run, the subroutine GetTimeOfDay is called from within
the subroutine Greeting and nesting occurs.

The first stack frame to be pushed onto the call stack is for the subroutine Greeting

Call Stack

Subroutine | Return Parameters Local
Name Address Variables
Greeting Line 2 |[Name = “Sarah” Null

When the subroutine GetTimeOfDay is called, another stack frame is pushed onto the
call stack and is placed on top of the frame representing Greeting:

Call Stack

Subroutine Return Parameters Local
Name Address Variables
GetTimeOfDay |Line 5 [Null Null
Subroutine Return Parameters Local
Name Address Variables
Greeting Line 2 |Name = “Sarah” |Null

O www.pmteducation Q@@ C) PMTEducation

(——|
@@
-resources-tuition-courses

When the subroutine GetTimeOfDay completes, its corresponding stack frame is popped
from the call stack:

Call Stack

Subroutine | Return Parameters Local
Name Address Variables
Greeting Line 2 |Name = “Sarah” Null

The computer now takes the stack frame at the top of the stack and goes to the specified
return address. Any parameters and local variables are restored.

Once the subroutine Greeting has completed, the final stack frame is popped from the
call stack, leaving it empty.

O www.pmteducation Q@@ C) PMTEducation

csPMI

resources-tuition-courses

Recursive techniques

A recursive subroutine is one which is defined in terms of
itself. This means that somewhere within the recursive
subroutine, there is a call to the subroutine itself.

Base case

The terminating situation

ADICU BT St daes o Any recursive subroutine must meet have a stoppin
use recursion to produce y ppIng

a result. condition (called a base case) which must be met at some
point in the execution of the program.

The pseudocode below is an example of a recursive algorithm which can be used to
calculate the factorial of a number, passed to the subroutine as a parameter.

1 SUBROUTINE Factorial(Value)

2 IF Value = @ THEN

3 RETURN 1

4 ELSE

5 RETURN Value * Factorial(Value - 1)
6 ENDIF

7 ENDSUBROUTINE

The algorithm can be called recursive because it calls itself on line 5 (shown in bold). The
algorithm’s base case is when Value = @. In this case, the algorithm doesn’t use
recursion to return a result.

When a problem can be solved recursively, it can often also be solved using iteration.
While iterative solutions are often easier to program, recursive solutions can be more
compact in code.

O www.pmteducation Q@@ C) PMTEducation

